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CELL LINE, SYSTEM AND METHOD FOR
OPTICAL CONTROL OF SECONDARY
MESSENGERS

RELATED PATENT DOCUMENT

This application is a continuation of U.S. patent applica-
tion Ser. No. 13/850,426, filed Mar. 26, 2013, now U.S. Pat.
No. 8,962,589, which is a divisional of U.S. patent appli-
cation Ser. No. 12/993,605, filed Jan. 20, 2011, now U.S.
Pat. No. 8,729,040, which is a national stage filing under 35
U.S.C. §371 of PCT/US2009/045611, filed May 29, 2009,
which claims the benefit, under 35 U.S.C. §119(e), of U.S.
Provisional Patent Application Ser. No. 61/057,108 filed on
May 29, 2008, each of which applications is incorporated by
reference herein in its entirety.

INCORPORATION-BY-REFERENCE OF
MATERIAL SUBMITTED ELECTRONICALLY

Incorporated by reference in its entirety is a computer-
readable nucleotide/amino acid sequence listing submitted
concurrently herewith, and identified as follows: One 12,342
Byte ASCII (Text) file named “STFD195PCT_ST25.txt”
created on Apr. 29, 2009.

FIELD OF THE INVENTION

The present invention relates generally to systems and
approaches for generating secondary messengers in
response to optical stimulus and more particularly to a cell
lines, nucleotide sequences, chimeric proteins, and uses
thereof, each relating to the production of secondary mes-
sengers in response to light.

BACKGROUND

Guanine nucleotide-binding proteins (G proteins) are
believed to alternate between an inactive guanosine diphos-
phate (GDP) state and an active guanosine triphosphate
(GTP) bound state. These two states have been linked to the
release of a secondary messenger within a cell. The released
secondary messenger can function to regulate downstream
cell processes.

Secondary messengers include signaling molecules that
are rapidly generated/released. These molecules produce
cellular responses by activating effector proteins within the
cell. Example cellular signaling systems include the phos-
phoinositol system, the cyclic adenosine monophosphate
(cAMP) system, and the arachidonic acid system.

Changes between the different states of the G proteins can
be triggered as a result of proteins called G protein-coupled
receptors (GPCRs), G protein-linked receptors (GPLR),
seven transmembrane domain receptors (7TM receptors) or
heptahelical receptors. This protein family includes a variety
of transmembrane receptors. These receptors respond to
external stimuli (e.g., light, neurotransmitters, odors or
hormones) by activating signal transduction pathways inter-
nal to the cell. Specifically, ligands bind and activate the
transduction pathways thereby causing the G proteins to
alternate states. GPCR-related activity is associated with
many diseases, and thus, GPCRs are the target of many
pharmaceuticals and treatments.

It is believed that over 30% of all drugs on the market
target G-protein coupled receptors (GPCRs) and that many
of those drugs relate to the production or inhibition of the
secondary messenger cAMP. There is an abundance of
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pathological processes that directly involve cAMP, includ-
ing neurophysiological, endocrinological, cardiac, meta-
bolic, and immune diseases. In the study of complex mam-
malian behaviors, technological limitations have prevented
spatiotemporally precise control over intracellular signaling
processes. Current chemical-based methods for modulating
secondary messenger levels, such as cAMP levels, operate
relatively slowly and present problems to study activity on
the fast timescales that the body uses in connection with
certain tissue, such as in nervous or cardiac tissue. These
chemical-methods often lack the speed to probe these fast
timescales (e.g., while screening for novel therapeutics).

SUMMARY

The present invention is directed to overcoming the
above-mentioned challenges and others related to generation
of secondary messengers and related imaging devices and
their implementations. The present invention is exemplified
in a number of implementations and applications, some of
which are summarized below.

Consistent with an embodiment of the present invention,
a method is implemented for generating secondary messen-
gers in a cell. A nucleotide sequence for expressing a
chimeric light responsive membrane protein (e.g., rhodop-
sin) is modified with one or more heterologous receptor
subunits {e.g., an adrenergic receptor (alphal, Beta2)}. The
light responsive membrane protein is expressed in a cell for
producing a secondary messenger in response to light.

Consistent with an embodiment of the present invention,
a method is implemented for assessing the efficacy of a
putative treatment regimen (e.g., a drug or electrical stimu-
lus or anything that works via these secondary messengers)
relating to intracellular messengers. A nucleotide sequence
for expressing a chimeric light responsive membrane protein
(thodopsin) is modified with one or more heterologous
receptor subunits {e.g., an adrenergic receptor (alphal,
Beta2)}. The light responsive membrane protein is
expressed in a cell for producing a secondary messenger in
response to light. The protein is exposed to light. The effects
of the treatment are assessed.

An embodiment of the present invention is directed
toward, a cell expressing a chimeric light responsive mem-
brane protein (rhodopsin) with one or more heterologous
receptor subunits {e.g., an adrenergic receptor (alphal,
Beta2)}.

An embodiment of the present invention is directed
toward, a nucleotide sequence for expressing a chimeric
light responsive membrane protein (rhodopsin) with one or
more heterologous receptor subunits {e.g., an adrenergic
receptor (alphal, Beta2)}.

The above summary of the present invention is not
intended to describe each illustrated embodiment or every
implementation of the present invention. The figures and
detailed description that follow more particularly exemplify
these embodiments.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention may be more completely understood in
consideration of the detailed description of various embodi-
ments of the invention that follows in connection with the
accompanying drawings, in which:

FIG. 1A shows a schematic showing optoGs and optoGq,
consistent with example embodiments of the present inven-
tion;
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FIG. 1B shows Enzyme-Linked Immunosorbent Assay
(ELISA) of cAMP, cGMP, and IP, of cells transfected with
either nothing, optoGs, or optoGq, consistent with example
embodiments of the present invention;

FIG. 1C shows Ca-imaging of cells transfected with
mCherry fusion proteins of optoGs and optoGGq, consistent
with example embodiments of the present invention;

FIG. 2 shows Ca-imaging of cells transfected with
mCherry fusion proteins of optoGs and optoGGq, consistent
with example embodiments of the present invention;

FIG. 3A shows cAMP, IP, and IP; levels for HEK cells
expressing various constructs, consistent with example
embodiments of the present invention;

FIG. 3B shows a lentiviral express vector, GAD immu-
nostaining of opto-a,; AR-expressing cells and observed
pCREB activation in optoXR-expressing cells (mCherry+)
following 10 min optical stimulation, consistent with
example embodiments of the present invention;

FIG. 4A shows optrode targeting of transduced accum-
bens, spike waveforms and baseline firing rates for indicated
constructs, consistent with example embodiments of the
present invention;

FIG. 4B shows in vivo optrode recordings with light
stimulation, consistent with example embodiments of the
present invention;

FIG. 4C shows change in spiking frequency with light
versus baseline, consistent with example embodiments of
the present invention;

FIG. 4D shows firing rate change kinetics, consistent with
example embodiments of the present invention;

FIG. 5A shows stereotactic targeting of a transduced
region, a freely moving mouse with implanted fiber optics,
a schematic of place preference apparatus and test and a
trace of a freely exploring mouse, consistent with example
embodiments of the present invention;

FIG. 5B shows preferences for control and opto-a, AR,
consistent with example embodiments of the present inven-
tion; and

FIG. 5C shows results of total distance for various open
field tests; consistent with example embodiments of the
present invention.

While the invention is amenable to various modifications
and alternative forms, specifics thereof have been shown by
way of example in the drawings and will be described in
detail. It should be understood, however, that the intention is
not to limit the invention to the particular embodiments
described. On the contrary, the intention is to cover all
modifications, equivalents, and alternatives falling within
the spirit and scope of the invention.

DETAILED DESCRIPTION

The present invention is believed to be useful for enabling
practical applications of a variety of optical-based systems
and methods, and the invention has been found to be
particularly suited for use in systems and methods dealing
with optical control of secondary messenger levels within a
cell. While the present invention is not necessarily limited to
such applications, various aspects of the invention may be
appreciated through a discussion of various examples using
this context.

Embodiments of the present invention involve a chimeric
membrane protein that responds to optical stimulus by
causing the release of a secondary messenger within the cell.
In a specific instance, the chimeric protein is a combination
of a heterologous receptor subunit and a protein that under-
goes conformation in reaction to light via photoisomeriza-
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tion and thus is activated by light. Rhodopsins or reti-
nylidene proteins provide an example group of light-
responsive proteins that can be modified to include a
heterologous receptor subunit.

According to an embodiment of the present invention, a
protein believed to contain a seven transmembrane c-helical
domain is modified to include a heterologous receptor
subunit associated with a secondary messenger. When
expressed in a cell membrane, the protein reacts to light by
undergoing a conformal change. The conformal change
triggers the release/production of the secondary messenger.

Embodiments of the present invention involve a nucleo-
tide sequence for coding a chimeric membrane protein that
responds to optical stimulus by causing the release of a
secondary messenger within the cell.

Embodiments of the present invention involve a cell that
expresses a heterologous and chimeric membrane protein.
The chimeric membrane protein responds to optical stimulus
by triggering the release of a secondary messenger within
the cell. In certain embodiments the expression of the
chimeric membrane protein occurs in vivo. In other embodi-
ments expression of the chimeric membrane protein occurs
in vitro.

Embodiments of the present invention can implemented
for production of any suitable secondary messenger by
modifying a Guanine nucleotide-binding protein coupled
receptor protein (GPCR) to include the appropriate receptor
subunit.

Embodiments of the present invention allow for the use of
proteins that respond to a variety of wavelengths and inten-
sities of light.

An embodiment of the present invention involves the use
of a chimeric GPCR protein, as disclosed herein, to deter-
mine any downstream effect of the secondary messenger
activity of interest.

Embodiments of the present invention are directed to
expression of a chimeric GPCR protein in a variety of cell
types including, but not limited to, mammalian cells, stems
cells, plant cells, and unicellular organisms like yeast and F.
coli.

A specific embodiment of the present invention is related
to an optimized expression of a chimeric protein with
attached fluorescent proteins for ease of visualization, and
optimized use of the modality for studying downstream
effects of the secondary messenger activity induced by light.

An embodiment of the present invention is directed to
genetically targeting a chimeric GPCR protein, as disclosed
herein, to specific cell populations for expression therein.
Cell-type specific promoters exist that are selectively
expressed in a target cell type (e.g., Synapsin-1 for targeting
neurons; Troponin variants for cardiac tissue). Placing these
promoters upstream of the chimeric GPCR protein in an
expression vector can be used to target expression of the
protein to a cell type of interest. This includes inducible,
reversible, or otherwise controllable promoter systems such
as Tet-response, ER-response, and Cre/Lox systems.

According to an example embodiment of the present
invention, a genetically encodeable protein is developed
such that, when these are expressed in cell types of interest,
cyclic adenosine monophosphate (cAMP) is produced in
response to light. This can be useful, for example, to
visualize downstream effects on cell physiology including,
but not limited to, screening for pharmaceuticals. Other
embodiments use a chimeric and heterologous GPCR that
results in the release of secondary messengers in response to
light. Example secondary messengers include cAMP, cyclic
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guanosine monophosphate (cGMP), inositol trisphosphate/
inositol 1,4,5-trisphosphate/triphosphoinositol (IP;) and
arachidonic acid.

Consistent with an embodiment of the present invention,
a method is implemented for assessing the efficacy of a
putative treatment regimen (e.g., a drug or electrical stimu-
lus or anything that works via these secondary messengers)
relating to intracellular messengers. A nucleotide sequence
for expressing a chimeric light responsive membrane protein
(e.g., rhodopsin) is modified with one or more heterologous
receptor subunits {e.g., an adrenergic receptor (alphal,
Beta2)}. The light responsive membrane protein is
expressed in a cell for producing a secondary messenger in
response to light. The protein is exposed to light. The effects
of the treatment are assessed.

The light can be applied according to a desired stimulus
profile. In one embodiment the expressed membrane protein
responds to light within tens of milliseconds. Thus, the
stimulus profile can include a series of light pulses in rapid
succession and the resulting effects can be monitored using,
for example, Ca®* sensitive dyes.

In one instance, the cell can first be stimulated without the
treatment. Once the treatment is administered, the cell can
then be stimulated again. The results of each test can be
compared to assess the effectiveness of the treatment.

The treatment can include a wide variety of different
implementations including, but not limited to, pharmaceu-
ticals, modifications to the cell (genetic or otherwise), physi-
cal parameters of the cell (e.g., temperature changes or
electrical stimulus) or a treatment regimen applied to an
organism.

In one embodiment, the treatment is the optical stimulus
of the expressed membrane protein. In such an instance the
effectiveness can be measured, for example, by monitoring
the symptoms associated with a disorder to be treated.

In another embodiment, the treatment regimen is imple-
mented as part of modeling a disease or disorder. For
example, a disease model can be used (cells or animals) and
the background/baseline state can be assessed before the
protein is expressed and the treatment regimen evaluated.

Experimental results show that optically-evoked cAMP
regulation of targeted ion channels can be visualized by
transfecting cells with both the cAMP-inducer and a cAMP-
targeted cation channel and visualizing resultant activity
using Ca**-sensitive dyes. This suite of genetically-encod-
able, optically-activated modulators of secondary messenger
activity can be useful in screening novel therapeutics as well
as being a therapeutic modality itself, given the implication
of cAMP in numerous diseases states, like ADHD and
cardiac channelopathies. The protein can be engineered for
use with various other secondary messengers (e.g., IP;),
other colors for light activation by engineering the retinal
binding site or choosing for the chimera a rhodopsin or cone
opsin with a different absorbance/action spectrum, and other
downstream effects of the secondary messenger, such as
calcium signaling and/or kinase activity.

FIGS. 1A, 1B and 1C show experimental data from
optoGs and optoGq, two examples of light-activated induc-
ers of secondary messenger signaling (‘optoXRs’) that have
been developed. These light-activated inducers are a rho-
dopsin/GPCR chimerism. OptoGq provides light-responsive
control of Gq signaling, whereas, OptoGs, provides light-
responsive control of Gs signaling.

In both optoGs and optoGq it has been shown that there
is negligible difference in baseline cAMP and 1P; levels in
darkness and that there is no crossover to other secondary
messenger pathways such as cGMP. The increased cAMP
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levels seen with light stimulation of optoGq is an expected
downstream effect of IP, production.

FIG. 1A shows a schematic of optoGs and optoGq,
consistent with example embodiments of the present inven-
tion. For each protein, the intracellular loops of rhodopsin
are replaced with those of adrenergic proteins normally
coupled to either Gs (beta2) or Gq (alphal). The genetic
coding sequences are optimized for expression in human and
murine cells. Examples of the resulting sequences include
optoGs: Seq. Id. No. 1 and Seq. Id. No. 2; and optoGq: Seq.
Id No. 3 and Seq. 1d. No 4.

As is appreciated by the skilled artisan, the amino acid
sequences of the proteins arc presented as non-limiting
examples in support of embodiments which extend to varia-
tions (e.g., point mutations) in the genetic sequence that
otherwise provide consistent, interchangeable or equivalent
results.

FIG. 1B shows Enzyme-Linked Immunosorbent Assay
(ELISA) of cAMP (top), cGMP (middle), and IP,; (bottom;
a degradation product of IP,) of cells transfected with either
nothing, optoGs, or opto(Gq, consistent with an example
embodiment of the present invention. The results of FIG. 1B
were obtained from cells that were stimulated with 504 nm
light (20 nm bandwidth) for one minute per spot or kept in
the dark, as indicated.

Stimulation was implemented using an environment-con-
trolled inverted culture microscope (Leica DMI6000B). In
the cAMP assay, some cells were treated with 10 uM
forskolin for 30 minutes as a saturating, positive control of
the assay. OptoGs significantly increased cAMP levels in
response to light. No significant baseline increase of cAMP,
or deviations of cGMP or IP; levels with optoGs were found.
OptoGq significantly increased IP3 levels in response to
light without significantly altering cGMP levels. An increase
in cAMP levels with IP, production is believed to be a
consequence of intracellular Ca* release.

FIG. 1C shows Ca-imaging of cells transfected with
mCherry fusion proteins of optoGs and optoGq, consistent
with example embodiments of the present invention. To
detect cAMP, a cAMP-selective mutant of the cyclic nucleo-
tide gated Ca®* channel CNGA2 was transfected in excess
of optoGs. 1P, activates release of intracellular Ca®* stores,
thereby providing a reliable signal of Gq activation. A
control population was also transfected with mCherry alone
with the mutant CNGA2 in excess. Cells were loaded with
fura-2 (20-25 minute incubation) and 2 ms exposures of 340
nm and 380 nm were acquired every two seconds. In each
of optoGs and optoGq the acquisitions alone were sufficient
to yield a Ca signal, while no significant signal was detected
in the control population.

FIG. 1 shows data obtained from a specific experimental
setup, however, the invention is not so limited. For example,
various deliver techniques other than transfecting are con-
templated including, but not limited to, viral transduction,
ballistic gene delivery (gene gun), and spontaneous nucleic
acid uptake.

The base-rhodopsin can be modified for use with any
suitable heterologous receptor subunits, such as Gi-coupled
receptors like the alpha2-adrenergic receptor or the dop-
amine D2 receptor or the serotonin SHT2A receptor; or other
Gs- or Gg-coupled receptors like the dopamine D1A recep-
tor or the metabotropic glutamate receptors.

According to one example embodiment, the base-rhodop-
sin is a protein derived from the bovine Bos taurus.

According to one embodiment the base-protein other than
the base-rhodopsin mentioned above can also be used and
includes various 7-transmembrane proteins, such as the cone
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opsins (red, green, or blue), rhodopsins of other species, and
ligand-gated receptors like the dopamine or serotonin recep-
tors.

Various implementations relate to in vivo applications in
mammals. These implementations include, but are not lim-
ited to, testing and confirming neural circuit and disease
models.

FIGS. 3A and 3B show experimental data from an in vivo
application of optoGs (opto-$,AR) and optoGq (opto-
a,;AR), which are two examples of light-activated inducers
of secondary messenger signaling. Aspects of the present
invention relate to the use and development of a versatile
family of genetically encoded optical tools (‘optoXRs’) that
leverage common structure-function relationships among
G-protein-coupled receptors (GPCRs) to recruit and control,
with high spatiotemporal precision, receptor-initiated bio-
chemical signaling pathways.

The results shown in FIGS. 3A and 3B relate to two
specific optoXRs that selectively recruit distinct, targeted
signaling pathways in response to light. The two optoXRs
exerted opposing effects on spike firing in nucleus accum-
bens in vivo, and precisely timed optoXR photostimulation
in nucleus accumbens by itself sufficed to drive conditioned
place preference in freely moving mice. The optoXR
approach allows testing of hypotheses regarding the causal
impact of biochemical signaling in behaving mammals, in a
targetable and temporally precise manner.

Optical control over intracellular signaling was imple-
mented in mammals, using shared structure-function rela-
tionships among GPCRs to develop and express in vivo
multiple distinct opsin/GPCR2 chimeras with novel trans-
duction logic that couples signal to effector. Consistent with
various implementations, one or more chimeric opsin-recep-
tor proteins are engineered to be functional within mammals
in vivo, targetable to specific cells, and responsive to pre-
cisely timed light pulses. Such approaches allow for the use
of high-speed optical stimulus (and protein response) to test
for and characterize intracellular biochemical events at
precisely-defined and behaviorally-relevant times. A few
non-limiting example implementations include, pulsatile
versus tonic modulation, synchrony between different
modulatory systems, and other fundamental physiological
and pathological processes in defined cell types over a range
of timescales.

Mammalian implementations have been successfully
implemented. In one example implementation, the intracel-
Iular loops of rhodopsin were replaced with those of specific
adrenergic receptors by first aligning conserved residues of
the Gg-coupled human o, , adrenergic receptor (a; AR) and
the Gs-coupled hamster [3,-adrenergic receptor ($,AR) with
the Gt-coupled bovine rhodopsin (FIG. 1A). Exchanges of
intracellular regions (including carboxy-terminal domains)
were engineered for each receptor based on structural mod-
els to transfer G-protein coupling from Gt, and optimized
each receptor for in vivo expression in mammals. Upon
activation by varied ligands, the native receptors can explore
multiple ensemble states to recruit canonical and non-
canonical pathways in a ligand-biased signaling phenom-
enon. The optoXRs are likely to select a single active
ensemble state upon sensing light in a manner dependent on
biological context.

Genes encoding chimeras (opto-a,; AR and optof,AR)
were fused to a fluorescent protein. Validation of functional
optoXR expression, was accomplished through imaged
[Ca®*], (intracellular calcium concentration) in HEK cells
transfected with opto-o; AR alone (expected to recruit
[Ca**], via Gq), or with both opto-B,AR (expected to recruit
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cyclic AMP via Gs) and the cAMP-gated Ca®* channel
CNGA2-C460W/E583M. Ratiometric [Ca®*], imaging dem-
onstrated that 60 s of green light stimulation (504+/-6 nm,
7 mW mm~2) was sufficient to drive prominent [Ca*],
signals downstream of either optoXR but not in control
conditions (FIG. 2), revealing functional expression. To test
specificity of the signaling controlled by each optoXR,
transduced HEK cells were illuminated with 3 mW mm™
504+/-6 nm light for 60 s and then lysed and analyzed for
levels of ¢cGMP, cAMP and IP,; (a degradation product of
IP;) via immunoassays. The canonical pattern was as
expected for opto-f,AR corresponding to its molecular
design, as optical stimulation yielded significant production
of cAMP in opto-f,AR-expressing cells (FIG. 3A, top),
comparable to that achieved with pharmacological stimula-
tion of the wild-type ,AR and without recruitment of IP,
(FIG. 3A, middle), [Ca**], (FIG. 2), or substantial dark
activity. In contrast, optical stimulation yielded significant
upregulation of IP; signaling in opto-c.; AR-expressing cells
(FIG. 3A, middle), comparable to levels induced by phar-
macological stimulation of the wild-type o, AR. Together
with the [Ca®*], elevations (FIG. 2), these data reveal the
pattern expected for Gq recruitment, a pattern not seen in
opto-P,AR-expressing cells (FIG. 3A, top). Optical stimu-
lation of cells expressing either construct was unable to
modulate cGMP levels (FIG. 3A, bottom), further indicating
the signaling specificity of the chimeric proteins. Similar
assays revealed that the optoXRs retain an action spectrum
close to that of native rhodopsin, are able to integrate signals
over a range of biologically suitable light fluxes, and can
activate non-canonical pathways to a similar extent as
wild-type receptors, as for p42/p44-MAPK signaling.

OptoXR performance in intact neural tissue has been
tested, including whether or not supplementation of retinal
cofactors was necessary. In one such test, lentiviral vectors
carrying the optoXR fusion genes under control of the
synapsin-I promoter (to target biochemical modulation to
local neurons rather than other potentially Gs/Gq-responsive
cellular tissue elements such as glia and endothelial cells;
FIG. 3B, top left) were stereotactically injected into the
nucleus accumbens of adult mice. This strategy targets
biochemical modulation to neurons with somatodendritic
compartments in accumbens (~95% GABAergic medium
spiny neurons, without further subtype specificity; FIG. 3B,
left) and excludes fibers of passage or afferent presynaptic
terminals as these lentiviruses do not transduce cells via
axons. Two weeks after transduction, acute coronal slices of
accumbens were prepared in artificial cerebrospinal fluid,
optically stimulated for 10 min, and immediately fixed and
stained for Ser 133-phosphorylated CREB (pCREB), a
biochemical integrator of both cAMP and Ca®*-coupled
signaling cascades. Without supplementation of exogenous
retinoids, significantly elevated pCREB was observed in the
optoXR-expressing populations (FIG. 3B, right) and not in
non-illuminated tissue.

The functional consequences of optoXR activation on
accumbens local electrical activity was determined by
recording multi-unit in vivo neuronal firing with an optrode
targeted to transduced accumbens (FIG. 4A). No significant
differences in baseline firing rates were observed in the dark
with either construct (FIG. 4A, bottom right). Optical stimu-
lation resulted in decreased network firing in opto-f,AR-
expressing accumbens (left trace in FIG. 4B illustrates effect
kinetics; summary data shown in FIGS. 4C and 4D respec-
tively), in agreement with previous pharmacological studies
targeting Gs. Optical stimulation increased firing in opto-
a, AR-expressing accumbens (FIG. 4B right; FIG. 4C, 4D).
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Spike frequency histograms showed that the kinetics of
optoXR effects on firing rates was consistent with biochemi-
cal rather than electrical initiation of the signal (FIG. 4D).
These electrophysiological data, in combination with the
earlier biochemical validations, support that optoXRs can be
functionally expressed in vivo, to permit differential photo-
activatable control of intracellular cascades and to modulate
network physiology.

In one implementation, optogenetics were used to assess
the ability of precisely timed optoXR stimulation to modu-
late behavior in freely moving mice. Portable solid-state
light delivery was combined with transgenic expression of
optoXRs to optically control intracellular signaling within
accumbens neurons in the temporally precise manner used
for operant behavior (FIG. 5A). Confocal analysis revealed
expression to be limited to local accumbens neurons; in
particular no labeling was observed in afferent fibers, in
distant regions projecting to accumbens, in glia, or in
surrounding regions. Optical stimulation was targeted to
transduced accumbens as part of a three-day operant con-
ditioned place preference assay (FIG. 5A). On each day of
the test, animals were allowed to freely explore the place
preference apparatus (FIG. 5A, bottom). On day 1, animals
freely explored the apparatus without optical stimulation.
On day 2, whenever the animal freely entered the designated
conditioned chamber, a laser-diode-coupled optical fiber
registered to the transduced region delivered light pulses at
10 Hz to approximate the likely intensity of monoaminergic
input during strong reward. Path tracing revealed that the
flexible optical fiber approach allowed full and unimpeded
exploration of all chambers (FIG. 5A, bottom). On day 3,
animals again freely explored the apparatus without optical
stimulation, and the time spent in the conditioned chamber
was quantified by two independent, blinded scorers. Nota-
bly, animals expressing opto-o,,AR showed a robust
increase in preference for the conditioned side of the appa-
ratus following optical stimulation (FIG. 5B). This effect of
temporally precise biochemical modulation was reproduc-
ible across two separate cohorts of opto-c,; AR animals
(n=5-6, P<0.05, Student’s t-test for each cohort for time in
conditioned chamber; n=11, P<0.01 for the total popula-
tion), whereas the other opsin genes, opto-f,AR and ChR2,
appeared less effective in driving preference. The effect of
opto-a,; AR stimulation in accumbens neurons was specific
to reward-related behavior and did not extend to direct
modulation of anxiety-related behaviors or locomotor activ-
ity, as identical optical stimulation delivered to a cohort of
the same animals in an open field test revealed no significant
effect on distance travelled or preference for wall proximity
(FIG. 5C).

A specific and non-limiting implementation that is con-
sistent with the above experiments is now described. In vivo
recording and analysis was performed using optrodes con-
sisting of a multi-mode optical fiber 200 mm in diameter
(Thorlabs) coupled to a recording electrode (1MV tungsten,
A-M Systems) with an electrode/fiber tip-to-tip distance of
200-400 mm were lowered into the transduced accumbens
(electrode tip 4.8-5.2 mm below bregma) of mice placed in
a stereotactic frame (David Kopf Instruments) and anaes-
thetized under isoflurane. Light from a 473 nm diode laser
(CrystalLaser) was delivered through the fiber. Electrical
signals were bandpass filtered and amplified (0.3-1 kHz,
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1800 Microelectrode AC Amplifier, A-M Systems) and
analyzed with pClamp 10.0 (Molecular Devices). Spikes
were detected by threshold and individually confirmed by
inspection.

Behavioral analysis was performed using optical stimu-
lation that was applied through an optical fiber (200 mm
diameter, Thor Labs) coupled to a 473 nm blue diode laser
(Crystalaser) and registered with a cannula targeting
accumbens (0-100 mm from tip). Light was delivered with
50 ms pulse width for optoXRs via a function generator
(Agilent 33220A). Place preference was conducted in a
standard apparatus (SD Instruments) with walls between
chambers removed to permit free exploration. Data were
analyzed from video for amount of time spent in each
chamber by two independent, blinded observers using a
custom tallying script run in MATLAB (Mathworks). For
open field tests, animals were placed in a square open field
measuring 40340 cm; light stimulation was delivered with
the same parameters as for place preference experiments.
Videos were analyzed using automated software (View-
point), for total time and distance in the central 15315 cm
square versus the outer annulus (remainder of the field).

Statistical analysis, where indicated, was performed using
two-tailed Student’s t-tests (calculated in Microsoft Excel)
or one-way ANOVA with Tukey post-hoc tests (GraphPad
Prism) were used. All summary bar graphs are presented as
mean+/-s.e.m., with significance denoted as follows:
*P<0.05, **P<0.01, ***P<0.001.

Further details supporting the surprising results and effec-
tiveness of various embodiments of the present invention
can be found in Temporally precise in vivo control of
intracellular signalling, Raag D. Airan, et al., Nature 458,
1025-1029 (23 Apr. 2009), which is fully incorporated
herein by reference.

The following description provides details for specific and
non-limiting method that is consistent with an embodiment
of the present invention. Numerous variations of this meth-
odology are envisioned and within the scope of the present
invention.

Vector Construction

Mammalian codon optimized sequences of opto-a, AR
and opto-f,AR (amino acid sequences in FIG. 1A) were
synthesized and cloned into pcDNA3.1, and fused to the
N-terminus of mCherry or YFP (with its start codon deleted)
using the Notl site. The linker between the optoXR and
mCherry/YFP is 5 GCGGCCGCC 3'. Lentiviral vectors
containing Synapsin | optoXR mCherry were constructed by
cloning the transgene for each optoXR mCherry into the
Agel and EcoRI sites of the pLenti Synapsinl hChR2
mCherry WPRE vector.

Lentiviral Production

High titer lentivirus was produced. Briefly, HEK 293FT
cells were plated to 90% confluence in a 4-layer cell factory
(Nunc) cultured with DMEM containing 10% FBS. Cells
were co-transfected with 690 pg of the lentiviral vector
described above and two helper plasmids (690 pg of
pACMVRS.74 and 460 pg of pMD2.G). Media was changed
at 15 h post transfection. At 24 h post transfection, media
was changed with 200-220 mL of serum free UltraCUL-
TURE (Cambrex) containing 5 mM sodium butyrate. At 40
h post transfection, the culture supernatant, now containing
viruses, was spun at 1000 rpm for 5 min to remove cellular
debris and then filtered using a 0.45 pm low-protein-binding
filter flask. The clarified supernatant was then ultra centri-
fuged for 2 h at 55,000 g using an SW 28 rotor (Beckman)
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to precipitate the virus. After centrifugation, supernatant was
discarded and the resultant viral pellet was dissolved in a
total of 100 uL of cold (4° C.) PBS. The resuspended virus
was centrifuged for 5 min at 7000 rpm to remove remaining
cellular and viral debris. Aliquots were frozen at —80° C.
until further use.

Animal Surgery and Behavior

Female C57BL/6 mice, 10-12 weeks old, were housed
and handled according to the Laboratory Vertebrate Animals
protocol of Stanford University. Virus solution was deliv-
ered to the right nucleus accumbens as follows. Animals
were anaesthetized under isoflurane and fur was sheared
from the top of the head. While under isoflurane anesthesia,
the head of the animal was placed in a stereotactic frame
(David Kopf Instruments). A midline scalp incision was
made and a ~1 mm diameter craniotomy was drilled 1.10
mm anterior, and 1.45 mm lateral to bregma. A beveled 33
gauge needle (NanoFil, World Precision Instruments) pre-
loaded with virus was then lowered into the accumbens
(needle tip at 4.70-4.80 mm ventral to bregma) and 1.0 uL.
of virus was injected at 100 nl./min using an automated
syringe pump (NanoFil, World Precision Instruments). Fol-
lowing injection, 3-5 min was allowed for tissue relaxation
and fluid diffusion before retraction of the needle. For
animals targeted for acute slice or in vivo recording experi-
ments, the craniotomy was filled with dental cement (Lang
Dental) and the incision was closed using VetBond (3M).
For animals targeted for behavioral analysis, cannulas
(C316G, cut 4.5 mm below the pedestal; PlasticsOne) were
placed with the pedestal flush to the skull. Cannulae were
secured using Metabond (Parkell) and dental cement (LLang
Dental). Following drying of VetBond or cement, animals
were removed from the frame and allowed to recover for at
least one week before further manipulation. Control animals
for behavioral experiments underwent the same manipula-
tions (surgery, cannula implantation, light stimulation) as
experimental animals, and were injected with vehicle (PBS)
alone instead of virus. For place preference experiments,
animals that did not show a baseline preference for either
side chamber (>70% or <10%) or for the central chamber
(>40%) were admitted into the study; >90% of all animals
met these criteria for an unbiased, balanced place preference
design.

Acute Slice Preparation

Animals were anaesthetized under isoflurane and decapi-
tated using surgical shears (Fine Science Tools). Coronal,
275 um-thick slices containing accumbens were cut and
stored in a cutting solution containing 64 mM NaCl, 2.5 mM
KCl, 1.25 mM NaH,PO,, 25 mM NaHCO;, 10 mM glucose,
120 mM sucrose, 0.5 mM CaCl, and 7 mM MgCl, (equili-
brated with 95% 02/5% CO,). Following slicing, slices
were incubated in the cutting solution at 32-35° C. for 30
min and then at room temperature until experimentation. For
ex vivo optoXR stimulation, slices were loaded on the stage
of an upright microscope (BX51W, Olympus) and perfused
with an artificial cerebrospinal fluid containing 124 mM
NaCl, 3 mM KCl, 1.25 mM NaH,PO,, 26 mM NaHCO,, 10
mM glucose, 2.4 mM CaCl,, and 1.3 mM MgCl, (equili-
brated with 95% 0O,/5% CO,). Light from a 300 W Lambda
DG-4 (Sutter) was passed through a 473 nm+20 nm band-
pass filter (Semrock) and applied to the slices using a 4x
objective (0.28 NA) for 10 min followed immediately by
fixation for later analysis.

Signaling Validation Assays

HEK293FT cells (Invitrogen) were transfected using
Lipofectamine 2000 (Invitrogen) in 24 well plates and
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changed to serum-free medium 4-6 hrs post-transfection.
For Ca®* imaging, cells plated on matrigel-coated coverslips
were loaded with 5 pg/ml fura-2 AM in F-127 Pluronic/
DMSO (Probes) in Tyrode containing 1 uM ATR, at 37° C.
and 5% atmospheric CO, for 20-25 min. Following loading,
coverslips were imaged at 340 nm/380 nm on an Olympus
BX51W using Metafiuor (Axon Instruments) controlling a
300 W Lambda DG-4 (Sutter). For immunoassays, 18-24 hrs
after transfection, 1 pM ATR and 50 mM LiCl (to prevent
1P, degradation) were added and plates transferred to an
environmentally-controlled microscope (Leica DMI6000;
37° C., 5% atmospheric CO,). 5 regions/well were optically
stimulated for 1 min each (Sutter 300 W Lambda DG-4;
Semrock 504/12 nm bandpass filter; 10x 0.30 NA objective);
3 wells/condition. Following incubation (cAMP/cGMP: 20
min; IP;: 1 hr), cells were lysed and analyze by HTRF
(CisBio) and a Biotek Synergy4 reader.

Immunohistochemistry and Confocal Analysis

Following in vivo stimulation, mice were transcardially
perfused with ice-cold 4% paraformaldehyde (PFA) in PBS
(pH 7.4) 90 min after termination of stimulation. Brains
were removed and fixed overnight in 4% PFA and then
equilibrated in 30% sucrose in PBS. Coronal, 40 um-thick
sections were cut on a freezing microtome and stored in
cryoprotectant at 4° C. until processed for immunohisto-
chemistry. Free-floating sections were washed in PBS and
then incubated for 30 min in 0.3% Tx100 and 3% normal
donkey serum (NDS). For acute slice experiments, imme-
diately following stimulation the 275 pum-thick slices were
fixed for 1 hr in ice-cold 4% PFA and incubated with 0.5%
Tx100 and 3% NDS. For MAPK assays, immediately fol-
lowing HEK293 cell stimulation, coverslips were fixed for
15 min, incubated with 0.6% H202 and then permeabilized
with 0.1% Tx100 in 3% NDS. Primary antibody incubations
were conducted overnight in 0.01% Tx100 and 3% NDS for
mouse anti-GAD67 1:500, Millipore, Billerica, Mass.; rab-
bit anti-cfos 1:500, Calbiochem, San Diego, Calif.; rabbit
anti-phospho-CREB Ser133 1:500, Millipore. Sections were
washed and incubated with secondary antibodies (1:1000)
conjugated to either FITC or Cy5 (Jackson Laboratories,
West Grove, Pa.) for 3 hrs at room temperature. Following
20 min incubation with DAPI (1:50,000) sections were
washed and mounted on microscope slides with PVD-
DABCO. The remaining overnight primary antibody incu-
bations (rabbit anti-phosphoErk1/2; anti-phospho-MAPK
p38 1:500, Promega, Madison, Wis.; mouse monoclonal
anti-dopamine D1 receptor 1:50, Chemicon; rabbit poly-
clonal anti-dopamine D2 receptor 1:50, Millipore; goat
polyclonal anti-choline acetyltransferase 1:200, Millipore)
were followed by incubation with biotinylated secondary
antibody (1:500, Jackson Laboratories), avidin-biotin-horse-
radish peroxidase treatment (ABC kit, Vector Labs, Burl-
ingame, Calif.), and TSA detection (Perkin Elmer, Shelton,
Conn.) according to manufacturer’s instructions.

Confocal fluorescence images were acquired on a Leica
TCS SPS scanning laser microscope using a 20x/0.70 NA or
a 40x/1.25 NA oil immersion objective. Four serial stack
images per condition were acquired within a 500 um region
beneath the cannula tract. DAPI staining was used to delin-
eate nuclei for determination of the mean pixel intensity of
cfos or pCREB immunoreactivity using Volocity (Improvi-
sion) software. Positive or pCREB-active cells were iden-
tified by intensity threshold, and image acquisition and
analysis were performed blind to the experimental condi-
tions.
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TABLE S1

14

Raw numerical pCREB intensities (au) for data represented in
FIG. 3B. Mean and SEM in bold for each subgroup; p-values

for two-tailed t-test of subgroup versus control in italics.

opto-0,; AR opto-PrAR
mCherry - + - +
Mean 65.326 97.95309 63.6385 82.83284
SEM 3.758281 7.199024 3.847409 6.907057
p-value vs. mCherry- 0.000272 0.019559
TABLE S2 The optoXRs are used to induce these alternative cascades

Raw numerical baseline firing rates (Hz) for data presented in
FIG. 4A. Mean and SEM in bold for each subgroup;
p-values for t-test of subgroup versus control in italics.

XFP 00 AR of,AR

Mean 2.596154 2439357 2.687798

SEM 0.436406 0.603845 0.346556

p-value vs XFP 0.834496 0.869791
TABLE S3

Raw numerical changes in firing rate (Hz) for data presented in
FIG. 4C calculated within the baseline itself (‘Base’) and

between the baseline and the light stimulation periods (‘Light”).

opto-B,AR Opto-a,; AR
Base Light Base Light
Mean 0.061788  -0.68113 -0.01287 3.816198
SEM 0.134665 0.162402 0.336387  0.812251
p-value vs Base 0.000861 0.000239

Accordingly, embodiments of the present invention relate
to optogenetic control of intracellular signaling and are
useful for temporally precision while operating in vivo
within behaving mammals, while displaying extremely low
dark activity, and recruiting the complex fabric of multiple
signaling molecules downstream of native receptors, thereby
unifying in a single technology many of the individual
positive aspects of other approaches. Similar embodiments
directly probe the causal significance of seven-transmem-
brane-dependent signaling pathways triggered by other
modulators, including myriad neurotransmitters and endo-
crine hormones. Other embodiments use an optoXR
approach in ways that extend beyond excitable cells to
capitalize upon the versatile integration of fiber-optic depth
targeting with optogenetically targeted photosensitivity. One
such embodiment relates to probing causal significance of
temporally precise biochemical signaling in diverse non-
excitable tissues.

Embodiments of the present invention relate to consider-
ations of the phenomenon of ligand-biased signaling,
wherein varied ligands can stabilize ensemble receptor con-
formational states and thereby bias the intracellular action of
the receptor in coupling to alternative transduction cascades.
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to similar levels as with pharmacological manipulation (for
example, opto-f,AR can induce similar changes in MAPK
activation compared with native ligand acting on the wild-
type B,AR); however, individual optoXRs may not always
be found to permit control of all of the conformational states
that contribute to ligand biased signaling Retinal-based tools
can be particularly useful due to the presence of the endog-
enous chromophore in mammalian tissues, and the
extremely low activity in the dark. Optogenetics can take the
form of diverse effectors linked to fast, single-component
retinal-binding modules, capitalizing on the temporal preci-
sion of optics.

Embodiments of the present invention use optoXR meth-
ods to complement microbial opsin strategies, providing
another dimension of fast, targetable cellular control opera-
tive in behaving mammals.

Consistent with another embodiment of the present inven-
tion, wavelength-shifted versions of the optoXRs, based on
known opsin genes with different action spectra, are used.
Such optoXRs can be particularly useful for providing
separable channels of biochemical and electrical control.

Variants of the specific protein sequences discussed herein
are consistent with embodiments of the present invention.
Some variants are greater than about 75% homologous to
these protein sequences, while others are greater than about
80%, 85% or 90%. In some embodiments the homology will
be as high as about 93 to about 95 or about 98%. The
compositions of the present invention include the protein
and nucleic acid sequences provided herein including vari-
ants which are more than about 50% homologous to the
provided sequence up to and including 100% homologous.

The various embodiments discussed herein could be inte-
grated with fast circuit readout technologies for increasingly
sophisticated interrogation and reverse engineering of neural
circuitry, both in normal operation and in disease states.

The various embodiments described above are provided
by way of illustration only and should not be construed to
limit the invention. Based on the above discussion and
illustrations, those skilled in the art will readily recognize
that various modifications and changes may be made to the
present invention without strictly following the exemplary
embodiments and applications illustrated and described
herein. For instance, such changes may include variations of
the secondary messenger produced. Such modifications and
changes do not depart from the true spirit and scope of the
present invention, which is set forth in the following claims.

SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS: 4

<210> SEQ ID NO 1

<211> LENGTH: 1302

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence
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<220> FEATURE:
<223> OTHER INFORMATION: rhodopsin/GPCR chimerism

<400> SEQUE:

atgaacggaa

agaagcccat

getgcettaca

gttatagcaa

gttgccgace

ggctactteyg

ggggagattg

tcecccattceca

acatgggtga

ccggagggaa
aacgagtctt
tttttetgtt
agcgaaggec
cacgggetge
atcatcatgg
atattcacge
gctaagacga
attgccttee
tattcatcta
ggccaggaaa
aattgtcagg
aacgacagcc
<210> SEQ I

<211> LENGT.
<212> TYPE:

NCE: 1

cagagggecc

ttgaggcgec

tgttcttget

agttcgaacg

tctteatggt

tgttcggece

cecctttggag

agtaccagag

tggCgCtggC

tgcagtgcag

ttgtgattta

acggcagggt

getttcacag

gacgcagttce

taatcgeett

accaggggte

gtgcggtgta

aggaattgct

acagcaacgg

aagagagcga

gaacagttce

ccctggagac

D NO 2

H: 434
PRT

aaacttttac

tcaatactac

gatcatgetyg

cctccaaacce

tttcgggggt

taccggatge

cctggtggte

tttgcttaca

ttgcgetgee

ttgtgggatc

tatgttegty

gttccaggte

ccccaatcett

taagttctge

cctgatatge

agattttggg

taacccagtyg

ctgtctcaga

aaagactgat

geggetttgt

gagtctctet

ttceccaggte

gttececttet

cttgctgage

gggttcccta

gtgttgaact

ttcaccacca

aatctggaag

ttggccatag

aagaacaagg

ccaccgetygy

gactactaca

gtccacttca

gccaaaagge

ggacaggttg

ctgaaggaac

tggcttecat

cctatcttta

atatacatca

cgcagetett

tatatgggeg

gaagatccce

cttgattcac

getecggect

<213> ORGANISM: Artificial Sequence

<220> FEATU

<223> OTHER INFORMATION: rhodopsin/GPCR

RE:

<400> SEQUENCE: 2

Met Asn Gly
1

Thr Gly Val

Glu Pro Trp
35

Met Leu Gly
50

Phe Glu Arg
65

Val Ala Asp

Thr Ser Leu

Thr Glu Gly Pro Asn

5

Val Arg Ser Pro Phe

20

Gln Phe Ser Met Leu

40

Phe Pro Ile Asn Phe

55

Leu Gln Thr Val Leu

70

Leu Phe Met Val Phe

85

His Gly Tyr Phe Val

100

Phe Tyr Val
10

Glu Ala Pro
25

Ala Ala Tyr

Leu Thr Leu

Asn Tyr Ile

75

Gly Gly Phe
90

Phe Gly Pro
105

ccaataagac

cgtggcagtt

tcaatttcct

acatactcct

ccctctacac

getttttege

agaggtacgt

ctatcatggyg

taggctggte

ccccacacga

tcatccecect

agctccagaa

aacaggacgg

ataaggcctt

acgctggegt

tgaccatacc

tgatgaacaa

ccaaagcgta

aagccagtygg

caggcactga

agggacgcaa

aa

chimerism

Pro Phe Ser

Gln Tyr Tyr
30

Met Phe Leu
45

Tyr Val Ile
60

Leu Leu Asn

Thr Thr Thr

Thr Gly Cys
110

tggggtegtyg
ttctatgete
gacgctgtac
taacctcgeg
ctcectteac
aacgetgggyg
ggtggtcaca
ggtegectte
ccggtatatt
agagactaac
gatagtgatc
gatcgacaaa
caggtcaggyg
gagaatggtg
ggctttttat
tgctttette
acaattcaga
cggaaatgge
ctgccagetyg
gagettegtyg

ttgctctace

Asn Lys
15

Leu Ala

Leu Ile

Ala Lys

Leu Ala
80

Leu Tyr
95

Asn Leu

60

120

180

240

300

360

420

480

540

600

660

720

780

840

900

960

1020

1080

1140

1200

1260

1302
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-continued

Glu Gly Phe Phe Ala Thr Leu Gly Gly Glu Ile Ala Leu Trp Ser Leu
115 120 125

Val Val Leu Ala Ile Glu Arg Tyr Val Val Val Thr Ser Pro Phe Lys
130 135 140

Tyr Gln Ser Leu Leu Thr Lys Asn Lys Ala Ile Met Gly Val Ala Phe
145 150 155 160

Thr Trp Val Met Ala Leu Ala Cys Ala Ala Pro Pro Leu Val Gly Trp
165 170 175

Ser Arg Tyr Ile Pro Glu Gly Met Gln Cys Ser Cys Gly Ile Asp Tyr
180 185 190

Tyr Thr Pro His Glu Glu Thr Asn Asn Glu Ser Phe Val Ile Tyr Met
195 200 205

Phe Val Val His Phe Ile Ile Pro Leu Ile Val Ile Phe Phe Cys Tyr
210 215 220

Gly Arg Val Phe Gln Val Ala Lys Arg Gln Leu Gln Lys Ile Asp Lys
225 230 235 240

Ser Glu Gly Arg Phe His Ser Pro Asn Leu Gly Gln Val Glu Gln Asp
245 250 255

Gly Arg Ser Gly His Gly Leu Arg Arg Ser Ser Lys Phe Cys Leu Lys
260 265 270

Glu His Lys Ala Leu Arg Met Val Ile Ile Met Val Ile Ala Phe Leu
275 280 285

Ile Cys Trp Leu Pro Tyr Ala Gly Val Ala Phe Tyr Ile Phe Thr His
290 295 300

Gln Gly Ser Asp Phe Gly Pro Ile Phe Met Thr Ile Pro Ala Phe Phe
305 310 315 320

Ala Lys Thr Ser Ala Val Tyr Asn Pro Val Ile Tyr Ile Met Met Asn
325 330 335

Lys Gln Phe Arg Ile Ala Phe Gln Glu Leu Leu Cys Leu Arg Arg Ser
340 345 350

Ser Ser Lys Ala Tyr Gly Asn Gly Tyr Ser Ser Asn Ser Asn Gly Lys
355 360 365

Thr Asp Tyr Met Gly Glu Ala Ser Gly Cys Gln Leu Gly Gln Glu Lys
370 375 380

Glu Ser Glu Arg Leu Cys Glu Asp Pro Pro Gly Thr Glu Ser Phe Val
385 390 395 400

Asn Cys Gln Gly Thr Val Pro Ser Leu Ser Leu Asp Ser Gln Gly Arg
405 410 415

Asn Cys Ser Thr Asn Asp Ser Pro Leu Thr Glu Thr Ser Gln Val Ala
420 425 430

Pro Ala

<210> SEQ ID NO 3

<211> LENGTH: 1485

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: rhodopsin/GPCR chimerism

<400> SEQUENCE: 3

atgaatggga ccgagggtcc aaatttttac gtacccttta gtaacaagac tggegtggtg 60

cgcagtccat tcgaagecce acagtactac ctegeagage cgtggcaatt ctcaatgetg 120

gccgettata tgttecttet gattatgetg gggtttccca tcaattttcet taccctgtat 180
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20

-continued
gtggtagcat gccacagaca tttgcactcce gtattgaatt atattcttet gaacctegeg 240
gtggcagatce ttttcatggt gtteggeggg tttacgacta ctectgtatac gteccctgeat 300
ggttattttyg tgttcgggee cacaggctge aacttggaag gettettege cactettgge 360
ggtgagatcyg ctctttggag cctggtegte ctggcecatceyg ageggtatgt ggtggtgtet 420
tatcctctca gatatcccac catagtgacce cagceggaggyg ccattatggyg tgtagecttt 480
acctgggtca tggetttgge ctgtgetget ceccccectgyg tgggttggte ccgetatatt 540
ccagaaggta tgcagtgttc ttgcggaatc gactactata ccccgcacga agagacaaac 600
aacgagtcct tcgtcatata tatgtttgta gtccacttta tcatcccctt gattgttatt 660
tttttttget atggacgegt ctacgtegtg gecaaaaggyg agtccagggyg cttgaaatct 720
ggactgaaga cagataagag cgattccgag caggtgaccce ttecgcattca taggaagaac 780
geeccageayg gcggaagegg gatggcatcce gecaagacta aaacccactt tteecgtgegyg 840
cttctcaagt tcteccgega gaaaaaggeg gegegcatgyg tcatcatcat ggttatcgee 900
tttctecattt getggetgcee ttacgetgga gtegegtttt acatcttcac acatcaaggt 960
tctgacttecg geccaatcett tatgaccatce cctgecttet tegccaagac ctectgecgtg 1020
tataacccecg ttatctatat tatgatgaac aagcagttcce ggaaggcatt tcagaatgtg 1080
ctgagaatcc aatgcctcetg teggaagcag tctagtaage atgccctggg gtatactcetg 1140
cacccaccca gtcaggetgt agagggecaa cacaaggata tggtgcggat accagtcggt 1200
tccagggaga cattttatceg gattagtaag accgacggag tctgcgagtg gaagttttte 1260
tcttecatge ccaggggatc tgcaaggatc acagtttcecta aggatcagte cagctgtacce 1320
acagccegeg tgcgctccaa atcctttett caggtcectget getgtgttgg cecctcaacce 1380
cceteecteg ataagaacca tcaggttcce accatcaagg tgcacactat atccttgagce 1440
gaaaacggcg aggaagttga aacttcacag gttgcccceg cctaa 1485
<210> SEQ ID NO 4
<211> LENGTH: 495
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: rhodopsin/GPCR chimerism

<400> SEQUE:

Met Asn Gly
1

Thr Gly Val

Glu Pro Trp
35

Met Leu Gly
50

His Arg His
65

Val Ala Asp

Thr Ser Leu

Glu Gly Phe

115

Val Val Leu

NCE: 4

Thr Glu Gly Pro Asn

5

Val Arg Ser Pro Phe

Gln Phe Ser Met Leu

40

Phe Pro Ile Asn Phe

55

Leu His Ser Val Leu

70

Leu Phe Met Val Phe

85

His Gly Tyr Phe Val

100

Phe Ala Thr Leu Gly

120

Ala Ile Glu Arg Tyr

Phe Tyr Val
10

Glu Ala Pro
25

Ala Ala Tyr

Leu Thr Leu

Asn Tyr Ile
75

Gly Gly Phe
90

Phe Gly Pro
105

Gly Glu Ile

Val Val Val

Pro Phe Ser
Gln Tyr Tyr
30

Met Phe Leu
45

Tyr Val Val
60

Leu Leu Asn

Thr Thr Thr

Thr Gly Cys
110

Ala Leu Trp
125

Ser Tyr Pro

Asn Lys
15

Leu Ala

Leu Ile

Ala Cys

Leu Ala
80

Leu Tyr
95
Asn Leu

Ser Leu

Leu Arg
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-continued

22

Tyr

145

Thr

Ser

Tyr

Phe

Gly

225

Gly

Thr

Lys

Trp

305

Ser

Thr

Phe

Lys

Gln

385

Ser

Trp

Ser

Phe

Lys

465

Glu

130 135 140

Thr Ile Val Thr

150

Gln Ala Ile

155

Pro Arg Arg Met Gly

Val Met Ala

165

Ala Ala Ala

170

Trp Leu Cys Pro Pro Leu

Ile
180

Glu Met Gln

185

Arg Tyr Pro Gly Cys Ser Cys Gly

Thr Glu Glu Thr Glu Phe Val

205

Asn Asn Ser

200

Pro His

195

Val
210

Val Phe Ile Ile

215

Ile Val Ile

220

His Pro Leu Phe

Val Val Val

230

Ala Glu Ser

235

Arg Tyr Lys Arg Arg Gly

Thr Glu

250

Leu Lys Asp Ser Ser Gln Val Thr

245

Lys Asp

Asn Ala Pro Ala Ser Met Ala

260

Arg Lys Gly Gly

265

Gly

Thr
275

Phe Val Phe Ser

285

Lys His Ser Arg Leu Leu

280

Lys

Ala
290

Ala Met Val Ile

295

Ile Met Val Ile Ala

300

Arg Phe

Ala Val Ala Phe Ile

315

Leu Pro Tyr Gly Phe Thr

310

Tyr

Phe Ile Phe Met Thr Ile

330

Pro Pro Ala Phe

325

Asp Gly

Ala Val

340

Val Ile

345

Ser Tyr Asn Pro Tyr Ile Met Met

Ala Phe Gln Val

360

Arg Lys Asn Leu Ile Gln

355

Arg Cys

365

Gln
370

Ala
375

Thr Leu His

380

Ser Ser Lys His Leu Gly Tyr

Ala Val Glu Gln

390

Met Val

395

Gly His Lys Asp Arg Ile

Glu Thr Phe

405

Arg Tyr Arg Ile Ser Lys Thr

410

Asp Gly

Phe Phe

420

Lys Ser Ser Met Pro Arg Ser Ala

425

Gly Arg

Gln Thr

440

Lys Asp Ser Ser Thr Ala Val

435

Cys Arg Arg

445
Gln Val

Val Thr

460

Leu Pro Ser Pro

450

Cys Cys Cys

455

Gly

Gln Val Thr Ile Val His Thr Ile

475

Pro
470

Asn His Lys

Glu Glu

485

Val Thr Glu Thr Ser Gln Val Ala

490

Asn Gly

Val

Val

Ile

190

Ile

Phe

Leu

Leu

Ser

270

Arg

Leu

His

Phe

Asn

350

Leu

Pro

Pro

Val

Ile

430

Ser

Ser

Ser

Pro

Ala

Gly

175

Asp

Tyr

Cys

Lys

Arg

255

Ala

Glu

Ile

Gln

Ala

335

Lys

Cys

Pro

Val

Cys

415

Thr

Lys

Leu

Leu

Ala
495

Phe

160

Trp

Tyr

Met

Tyr

Ser

240

Ile

Lys

Lys

Cys

Gly

320

Lys

Gln

Arg

Ser

Gly

400

Glu

Val

Ser

Asp

Ser
480

What is claimed is:
1. A method for generating secondary messengers in a

cell,

the method comprising:

a) expressing in the cell a chimeric light-responsive fusion

protein comprising a light-responsive rhodopsin-based
membrane protein and a heterologous alpha-1 adren-
ergic receptor, wherein said expression provides for
production of a secondary messenger in response to
light, and wherein the chimeric light-responsive fusion

60

65

protein comprises an amino acid sequence having at
least 85% amino acid sequence identity to the amino
acid sequence set forth in SEQ ID NO:4, wherein the
cell expresses a secondary messenger-targeted cation
channel that is responsive to the secondary messenger;
and

b) stimulating the chimeric light-responsive fusion pro-

tein with light, thereby generating the secondary mes-
senger in the cell.
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2. The method of claim 1, wherein the secondary mes-
senger is inositol trisphosphate/inositol 1,4,5-trisphosphate/
triphosphoinositol (IP;).

3. The method of claim 1, wherein said expressing and
said stimulating are carried out in vivo. 5
4. The method of claim 1, wherein said expressing and

said stimulating are carried out in vitro.

5. The method of claim 1, wherein the chimeric light-
responsive fusion protein comprises an amino acid sequence
having at least 90% amino acid sequence identity to SEQ ID 10
NO:4.

6. The method of claim 1, wherein the chimeric light-
responsive fusion protein comprises an amino acid sequence
having at least 95% amino acid sequence identity to SEQ ID
NO:4. 15

7. The method of claim 1, wherein the chimeric light-
responsive fusion protein is encoded by a nucleotide
sequence that is operably linked to a cell type-specific
promoter.

8. The method of claim 1, wherein the cell is a mammalian 20
cell.

9. The method of claim 1, wherein the cell is a neuron.

10. The method of claim 7, wherein the cell type-specific
promoter is a neuron-specific promoter.

11. The method of claim 10, wherein the promoter is a 25
synapsin-1 promoter.
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